

6A10

6.0AMPS. GLASS PASSIVATED RECTIFIERS

FEATURE

- . High current capability
- . Low forward voltage drop
- . Low power loss, high efficiency
- . High surge capability
- . High temperature soldering guaranteed: $260^{\circ}\text{C}\ / 10\text{sec}/\ 0.375"$ lead length at 5 lbs tension

MECHANICAL DATA

. Terminal: Plated axial leads solderable per MIL-STD 202E, method 208C

. Case: Molded with UL-94 Class V-0 recognized Flame Retardant Epoxy $\,$

. Polarity: color band denotes cathode

. Mounting position: any

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at $25\,^\circ\!\mathbb{C}$ ambient temperature unless otherwise specified.

Single phase, half wave, 60Hz, resistive or inductive load.

For capacitive load, derate current by 20%

SYM BOL	6A05	6A1	6A2	6A4	6A6	6A8	6A10	units
$V_{ m RRM}$	50	100	200	400	600	800	1000	V
$V_{ m RMS}$	35	70	140	280	420	560	700	V
$V_{ m DC}$	50	100	200	400	600	800	1000	V
1	6.0							A
IF(AV)								
T	200.0							A
1 FSM	200.0							A
$V_{ m F}$	1.0		V					
7	5.0							μΑ
IR	200.0							
$C_{ m J}$	100		pF					
$R_{(JA)}$	40		°C/W					
T _{STG}	-55 to +150			°C				
$T_{ m J}$	-55 to +150		°C					
	BOL V_{RRM} V_{RMS} V_{DC} $I_{F(AV)}$ I_{FSM} V_{F} I_{R} C_{J} $R_{(JA)}$ T_{STG}	BOL 6A05 V_{RRM} 50 V_{RMS} 35 V_{DC} 50 I_{F(AV)} I_{FSM} V_F I_R C_J R_{(JA)} T_{STG}	BOL 6A05 6A1 V_{RRM} 50 100 V_{RMS} 35 70 V_{DC} 50 100 I_{F(AV)} I_{FSM} V_F I_R C_J R_{(JA)} T_{STG}	BOL 6A05 6A1 6A2 V_{RRM} 50 100 200 V_{RMS} 35 70 140 V_{DC} 50 100 200 I_{F(AV)} I_{FSM} V_F I_R C_J R_{(JA)} T_{STG} -5	BOL 6A05 6A1 6A2 6A4 V_{RRM} 50 100 200 400 V_{RMS} 35 70 140 280 V_{DC} 50 100 200 400 I_{FSM} 200.0 V_F 1.0 I_R 5.0 I_{CJ} 100 $R_{(JA)}$ 40 I_{STG} -55 to +1	BOL 6A05 6A1 6A2 6A4 6A6 V_{RRM} 50 100 200 400 600 V_{RMS} 35 70 140 280 420 V_{DC} 50 100 200 400 600 I_{FSM} 200.0 V_F 1.0 I_R 5.0 200.0 C_J 100 40 $R_{(JA)}$ 40 -55 to +150	BOL 6A05 6A1 6A2 6A4 6A6 6A8 V_{RRM} 50 100 200 400 600 800 V_{RMS} 35 70 140 280 420 560 V_{DC} 50 100 200 400 600 800 $I_{F(AV)}$ 6.0 I_{FSM} 200.0 I_R 5.0 I_{CJ} 100 $R_{(JA)}$ 40 I_{STG} -55 to +150	BOL 6A05 6A1 6A2 6A4 6A6 6A8 6A10 V_{RRM} 50 100 200 400 600 800 1000 V_{RMS} 35 70 140 280 420 560 700 V_{DC} 50 100 200 400 600 800 1000 I_{FSM} 200.0 V_F 1.0 5.0 200.0 I_R 200.0 100 200.0 40 I_{R} 200.0 -55 to +150 -55 to +150

Note:

- 1. Measured at 1.0 MHz and applied reverse voltage of 4.0Vdc
- 2. Thermal Resistance from Junction to Ambient at 0.375" (9.5mm) lead length, vertical P.C.Board Mounted.

RATING AND CHARACTERISTIC CURVES

FIG.2-TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

FIG.3-MAXIMUN NON-REPETITIVE FORWARD SURGE CURRENT

FIG.4-TYPICAL REVERSE CHARACTERISTICS

PERCENT OF RATED PEAK REVERSE VOLTAGE,(%)

Marking and packaging illustration

1. Marking

SYMBOL	Explanation			
A	Color Band Denotes Cathode			
В	Product Name(X:05,1,2,4,6,8,10)			
C	Trademark			

2. Packaging

ITEM	SYMBOL	SPECIFICATIONS	SPECIFICATIONS		
I I EMI	SIMBOL	(mm)	(inch)		
Component alignment	Z	1.2max	0.048max		
Tape width	T	6.0 ± 0.4	0.236 ± 0.016		
Exposed adhesive	Е	0.8max	0.032max		
Body eccentricity	L1-L2	1.0max	0.040max		
lead spacing	A	10.0 ± 0.5	0.4 ± 0.02		
Tape span inside	В	52.0~53.5	2.06~2.11		

NOTE:

Each component lead shall be sandwiched between tapes for a minimum of 2.5mm (0.1inch)